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An approximate model of melting of semitransparent media with formation of an isothermal transition zone is 
constructed which makes it possible to establish possible regimes of melting and to analytically calculate the 
dynamics of the process under the action of pulse radiation flux. 

By semitransparent (or, in other words, partially transparent) materials are meant substances which, in certain 
regions of the spectrum, transmit thermal radiation incident on them for a considerable distance into the depth of the 
specimen [ 1]. Practically all dielectrics in various structural states are among these materials, including ice and snow, which 

are widespread in nature. Under radiation flux incident on the outside of the specimen of some medium, the latter can attain 
the melting temperature and then undergo a phase transition. If the medium is nontransparent in relation to radiation (metals 

are an example practically over the entire range of the thermal radiation spectrum), then its melting starts from the surface: 
the melting front divides the melt and the solid phase. A mathematical description of this process is given by different 

variants of the classical Stefan problem, to which much research is devoted (see, for example, [2-6]). 
To describe a phase transition in semitransparent media under thermal radiation, including the intrinsic radiation of 

the substance, use was also made of the classical Stefan problem [1, 7, 8]. The employed methods for specifying the 
boundary condition on a moving boundary are surveyed in [9]. However, as a theoretical analysis [10] and numerical 
calculations [8] show, under certain conditions paradoxical situations occur, which invoke no explanation within the 
framework of the classical Stefan problem -- the zones of superheating of the solid phase emerge. The analysis leads to the 

following physical picture of melting of semitransparent bodies. Having absorbed the radiation penetrating into the body and 
having attained the melting temperature, the volume element of the partially transparent substance is transformed into a liquid 
state not instantly but in some time. This time is determined by the intensity of the radiation source and by thermophysical 
and optical properties of the material. In the semitransparent material layer three zones are formed: a solid which has not 

attained the melting temperature, an intermediate isothermal zone, formed by a mixture of the melt and the solid phase with 
different volume content of the melt, and, finally, a zone of the totally melted material. The emergence of the intermediate 
zone formed in the interaction of radiation with semitransparent media was observed and described in [9], According to this 
physical picture a mathematical formulation of relevant problems is also bound to be changed. 

Generalized statements of the problems allowing for the presence of the intermediate zone are considered in [9-18] 
as applied to the problems of melting and crystallization, thawing of frozen grounds, and to geophysical problems. 

The present work considers in a one-dimensional statement the approximate model of melting of a semitransparent 
medium under pulse irradiation. By pulse radiation, according to [19], we will mean radiation emitted for a limited, fairly 

small time. Gas-discharge pulse lamps, strong-current carbon arcs, power incandescent lamps, and others [19] as well as 
luminous bodies produced in large-scale accidents and explosions [20] may serve as pulse radiation sources of moderate 

intensity. The operating time of the mentioned sources is as a rule of the order of 10-z-10 ~ the characteristic time to of 
irradiation rise to the maximum is fractions of a second, and the maximum irradiation F o is of the order of 105-108 W/m 2. 

The model of melting a semitransparent medium discussed below takes account of the pulse character of irradiation and 

enables us to analytically calculate the dynamics of the process of melting and the limiting thickness of the melted layer. 
1. The basis for the approximate model of melting of semitransparent media is formed by the following assumptions. 

It is believed that in melting there occurs no variation in the density of the material so as not to take into account convective 

streams arising with different densities; the refractive indexes of the solid and the melt are similar and there is no internal 
reflectionat the solid-melt interfaces. The approximation of a gray substance is taken. It is believed that the intermediate iso- 
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Fig. 1. Layout of two melting fronts on the plane (x, t). 

thermal zone formed by a mixture of the melt and the solid phase has an extinction coefficient, independent of the melt 

fraction. In connection with the given assumption we will point out that the physical properties of the transient zone formed 

in melting or crystallization of semitransparent bodies have hardly been investigated to date [9, 11]. The intrinsic radiation of 

a medium is assumed to be negligible in comparison with the absorbed radiation (approximation of a cold substance). To 

describe the extinction of the radiation flux in the bulk of the semitransparent substance we employ Bouguer's law with an 

effective extinction coefficient independent of the medium temperature. Finally, the pulse character of irradiation with rather 

high intensity assumes rapid heating of the medium when heat conduction is of negligible importance. 

We will consider in more detail the last assumption, which is of substantial importance in constructing the 

approximate model of melting. Assume that there is given a half-space x ~ 0, filled with a partially transparent substance 

with the extinction coefficient a~, the reflectivity R~, and the initial temperature To < T,. For t >_ 0 the half-space is 

externally irradiated by the pulse radiation flux described by the function F(t) = F0f(t/to). Using the dimensionless variables 

u = (T - T0)/AT, 0 = t/to, and y = alx the mathematical formulation of the problem of heating up the half-space with 

constant thermophysical characteristics until its elements attain the melting temperature has the form 

0U __ b 02----~ @ d I exp ( - -  y) f (0), ( l )  
O0 ay z 

Here 

y > 0 ,  0 <  0 < 0 m ,  (2) 

u(y, o)= 1, y>~o, 

Ou(O, 0) = 0 ,  0 ~ 0 .  (3) 
Oy 

9 

b = •176 d l =  al(1 - R 1 )  F~176 " 
pc peAT 

0 m is the dimensionless time of attaining the melting temperature. The condition (3) characterizes the absence of heat 

exchange between the half-space and the ambient medium. In many cases the dimensionless coefficient b is a small quantity. 

For example, for ice • = 2.23 W/(m'K), a 1 = 5 m -1 [21], p = 917 kg/m 3, c = 2.1 x 103 J/(kg'K). Assuming to = 1 sec, 

we obtain b = 2.9 x 10 -5. In this connection along with problem (I)-(3) we will deal with the tbilowing Cauchy problem, 

formally corresponding to the case b = 0: 

0---U-U = dl exp (--  y) r (0), 0 ~  0, (4) 
O0 

U(y, o)=  l, y~>O. (5) 
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Using estimates analogous to those performed in [22] it can be shown that tbr all y ~ 0, 0 < 0 < 0 m there exists an 

equality 

lira u (y, 0) = U (y, 0), (6) 
b ~ 0  

which indicates that for fairly small values of  the parameter b in practical calculations, instead of  (1)-(3), we can use the 

solution of the problem (4)-(5) ignoring heat conduction. This circumstance substantially simplifies the analysis and is used 

below to construct the approximate model of melting of semitransparent media. 

2. We go to a mathematical description of the approximate model. Let the half-space x > 0 be partially filled with 

a semitransparent medium with the extinction coefficient a~, the reflectivity RI, and the initial temperature T O < T..  For t -> 
0, the half-space surface is irradiated by the pulse radiation flux described by the function F(t) = Fof(t/to). The work [19] 

proposes dependences for F(t), formed by conjugating various analytical expressions. Below we will consider the function 

F(t) to be determined on the interval [0 ,  + ~ ) ,  nonnegative, piecewise continuous, and fulfulling the condition 

i F ( t ) d t <  + co, 
0 

when needed F(t) may be considered equal to zero with t > t~, where t~ is the operating time of the radiation source. 

Figure 1 shows the plane of variables (x, t); plotted are the boundaries of a two-phase intermediate zone (the leading 

edge x = ~(0 and the trailing edge x = r/(0). Here too the regions fli (i = 1, 2 . . . . .  6) are set aside. In each of them we 

write an equation for the temperature of medium T or for the melt fraction z (0 _< z _<1) according to the assumptions 

formulated above. We agree to provide the quantities T and z with the index fitting the considered region f/i. We have the 
following problems: in the region fll 

OT1 
pc - -a~(1--R1)exp(- -a~x)F( t ) ,  0 < t < t . ,  T(x,  0) = T o ;  (7) 

Ot 

in the region 9~ 

in the region ft 3 

9 c - -  
OTe = at (1 - -  R~) exp [ - -  a2~ (t) - -  al (x - -  ~ (t))] F (t), t .  < t < t*, 
Ot 

T2 (x, t , )  = T1 (x, t ,);  

(8) 

Oz3 
Ot 

- -  as (1 - -  Re) e x p ( - -  a2x) F (t), t .  < t < t*, 
/ 

z3 (x, t (x)) = 0. 

(9) 

Here t = t(x) is the function inverse to x = ~(t), and L is the melting specific heat. Let us introduce the notation x* = ~(t*). 
In the region ~4 we have 

In the region ~5 

pL 

pc OTa _ al ( 1 -  Ra) exp [--  a3rl (t) - -  a~ (~ (t) - -  rl (t)) - (10) 
Ot 

- -  al (x - -  ~ (t))] F (t), t > t*, 

Ta (x, t*) = Tz (x, t*), x ~ x*. 

~7. 5 

Ot 
-~ a2 (1 - -  R3) exp [--  a3~l (t) - -  a2 (x - -  rl (t))l F (t), t > t*, 

zs(x,  t*) = z3 (x, t*), 0 ~ x < x*, 

z5 (x, t (x)) = 0, x ~ x*. 

(11) 
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The problem for the temperature T 6 in the region ~6 in the given work is of auxiliary character and therefore is not dealt 
with. Equations (9) and (11) for the melt fraction z(x, t) in the intermediate zone follow from consideration of the energy 

balance for the element of a melting substance [9]. 

To complete the statement of the problems (7)-(11), additional conditions on the moving boundaries x = ((t) and 

x = r/(t) should be indicated. In the general case these conditions have the form [9] (x t is the thermal conductivity of the 

melt) 

T~(~(t) q-O, t ) =  T. ,  OT~(~(t) +O, t) _~0, i = 2 , 4 ;  
Ox (12) 

T+ (n  (t)  - -  O, t) = T, :  - -  • OT+ (n(t) --O, t) = [1 - -  z5 (+l(t) + 0 ,  t)l oL dTt (13) 
Ox dt 

In the approximate model studied, according to the assumption of negligible influence of heat conduction and in view of the 

first order of Eqs. (7)-(11), we use below the following closing relations, resulting from Eqs. (12) and (13): 

T,(~(t), / ) - : T ~  i = 2 ,  4, (14) 

z~ (~ (t), t) = t. 
(15) 

In expressions (7)-(11) the following values are to be determined: t, is the instant in which the surface of the 

semitransparent medium attains the melting temperature; t* is the instant where the rear boundary of the intermediate 

two-phase zone forms; T 1, T 2, and T4 are the temperature fields in the regions ~21, f22, and ~4, respectively; z 3 and z 5 are the 

distribution of the melt fraction in the regions ~3 and ~5; x = ~2(t) and x = r/(t) are the leading and trailing edges of melting, 

limiting the intermediate isothermal zone. Besides, different regimes of heating a medium are realizable, which are 

characterized by the absence of one or both edges of melting. This is to be determined in the process of solution. The 

remaining values in (7)-(11) are considered prescribed. 

Let us take a closer look at the value of reflectivity of the two-phase zone. With t. < t _< t+ the reflectivity R2 

depends, in general, on the value of z. Thus, in observations of thawing snow under solar radiation it is established [21] that 

as the water fraction on the day surface of the ground increases, the reflectivity of the snow monotonically decreases. Taken 

below is the linear dependence of the reflectivity of the melting medium on the melt fraction on the surface: 

R2 = R2(t) =: R3z( , t) + [1 - - z (0 ,  t)lRa. (16) 

The explicit +brm of the dependence of R 2 on time with t. < t < t* is determined below. 

3. We present a procedure for constructing the solution of the problems (7)-(12), (14), and (15). First of all we note 

that if the dependences x = ~(t) and x = r/(t) are established then Ti(x, t) and zi(x, t) can be found from (7)-(11) by simple 

integration. Therefore, most attention will be concentrated below on finding the leading and trailing edges of melting and 

determining the criteria of their formation. Using (7) we determine the temperature distribution in the solid medium up to the 

moment the melting starts: 

T 1 (x,  t) == T O .-]- a l  (1 - -  R1) exp (--  alx) cD (t). (17) 
pc 

Here and below use is made of tile function 

l 
q) (t) = ( F (~) d'~. 

6 
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We will introduce the dimensionless quantity 

K a =  al (1 ~ Rx) q) (~176 
9cAT 

The criterion of  melting of the semitransparent medium and formation of the leading edge x 

inequality 

K l ~  1, 

which follows from (17) when x = 0 and corresponds to the condition 

lira T~ (0, t) ~ r , .  
~ c o  

When inequality (19) is met, the instant U is determined from the equation 

(18) 

= ~(t) is specified by the 

(19) 

9cAT 
qJ ( t , )  = 

al (1 --  R1) 

whose solution exists and is unique by virtue of continuity and monotony of the function ~(t). With K~ < 1 melting does not 

set in. 

Now we consider problem (9). It follows from it that z3 acquires its maximum value when x --- 0. Assuming in (9) 

that x = 0 and using (16), we obtain an expression for z3(0 , t) 

z~ (0, t) . . . . .  ~exp (q) (t) - -  q) - -  . 
t ? , 1  - -  R3 ~, 9L 

From this we will determine the functional dependence of the reflectivity R 2 on time 

R2 (t) = 1 -r (1 - -  R1) exp I a2 (/~1 - -  /~3) (q )  ( t)  - -  (ID (t$))} �9 
. 9L 

The fulfillment of the inequality 

lira za (0, t) ~ 1 
(20) 

signifies the formation of  the trailing edge x = r/(t). Relation (20) may be written in the equivalent form 

K2 ~ 1, (21) 

where 

Ks -- a2 (R1 - -  R3) [q) ( ~ )  - -  q) (t,)] 
oL In [(1 - -  R3)/(I - -  R1)] 

Inequality (21) represents the criterion of formation of  the trailing edge of  melting/'or the semitransparent medium. With its 
fulfilhnent the time t* is determined by the equation 

whose solution exists and is unique. 

�9 (t*) = O ( t , ) - l -  pL In 1 - - R ~  
a~(R1--R3) l - -R1  
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Let us proceed to finding the functions ~(t) and ~/(t). The inequalities K~ > 1 and K 2 2> 1 will be considered 
fulfilled and the values of t. and t* found. With the aim of determining the front x = ~(t) for t. -< t _< t* we deal with 
problem (8). Taking into account that Tl(x , 0 = To + ATexp(-alx) ,  we integrate Eq. (8) and employ condition (14). We 
arrive at the integral equation for determining ~(t): 

al ti, [1 --/~',~ ('v)] exp [(a I - -  a2) ~ (T)] F (-c) d'r, exp [a~ (t)] -- 1 q- p - 7 ~  .;~ (22) 

whose solution has the form 

t 

Two variants are further possible for the layout of the lines ~(t) and ~(t) on the plane (x, t). In the first case the front x = r/(t) 

X* does not cross the straight line x = ~(t*) (see Fig. la). In the second case lim 7/(t) > x* (see Fig. lb). We begin by 

considering the first possibility. To fend ~/(t) we use problem (11), where z3(x, t*) is determined from (9) 

zz(x, t*) a2exp(--a~x) tj.[12 = - - -  R~ (T)] F (x) d-r. 
pL , 

(24) 

Here t 1 (t* _< h -< t*) is the instant satisfying the condition ((h) -- rl(t) (see Fig. la). Integrating (11) in view of (24) and 

using the condition (15) on the trailing edge, we arrive at the integral equation 

exp [az~l (t)] = [1 - -  R, ('r)] F ('r) dr  -~- 
i 

+ o~(1 --/73) 
9L 5 exp [(a~ - -  as) a'l (z)] F ('~) dT. 

l* 

In view of the equality ((h) = r/(t) and formula (23) the given equation can be transformed to the form 

exp [a2rl (/)1 = 1 -}- a2 (1 - -  R~) !i exp [(a2 - -  a~) ~1 (x)l F (z) dT. 
O (L q- cAT) 't 

(25) 

Differentiating the both sides of (25) and using the relation rl(t*) = 0, we find 

"q(t)= 1 .1n{l  + 
a s  

as (1 --  R3) 
P (L -4- cAT) 

[o  (t) --  go (t*)]}. 
(26) 

The function x = ((t) for t _> t* remains to be determined. For this purpose we make use of problem (10) together with 

condition (14). We obtain the integral equation, 
t* 

al S [ 1 - -  R2 ('0] exp [(al - -  as) ~ ('Q] F (x) d-r -- exp [al~ (t)l = 1 + ~ t, 

9cAT i* 
in which the above-found functions ~(t) (t x _< t _< t*, formula (23)) and ~/(t) (t ~ t*, formula (26)) appear. After 

transformations, with the use of these dependences, we have 

t 

exp [a2~ (t)] CATcAT-k L q- a2. (9cAT1 Ra) t f* exp [(az --  as) ~1 ('Q] F (x) dr. 
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From this equation in view of (25) we can obtain 

~( t ) :~ l ( t ) - t -  a21 l n (  1 +  ~ L  ) .  (27) 

The expression for ~(t) is given by formula (26). 
We now turn to the second possibility of the layout of the two-phase zone boundaries (see Fig. lb). The leading 

edge of melting for t, _< t < t* is as previously described by formula (2). Let us denote by t** the instant in which the 
equality ~7(t**) = ((t') is satisfied (see Fig. lb). Then for t* _< t _< t** the rear boundary of the two-phase zone x = ((t) is 
determined similarly to the previous case and is specified by formula (26). Taking advantage of the problems (9) and (11) as 
well as of conditions (14), (15), we arrive at the following system of integral equations for determining the functions ~(t) 
with t _> t* and ~(t) with t ~ t**: 

l* 

�9 exp [al~ (t)] = 1 -~" a~-~T !. t l  - -  jl~2 ('I~)] exp [ (a l  - -  a~)~ (I:)] F('O d'~ -F 

t 
-F a, (! - -  Re) S exp [(a2 - -  a3) rl ('0 § (al a,) ~ (r)] F (~) dr, t ~ t*, 

9cAT t. 

exp[ao.n(t)l a~(1--R3) iexp[(a~__a~)n(.OlF(.O& ' t>/t**, 
pL h 

(28) 

where tl is such that ~(tl) = r/(t) (see Fig. lb). Omitting intermediate calculations, we write the solution of the system (28) 

i as (1 - -  R3) - -  r (t*)]} ( t ) = - I  In l +  [~(t) , 
a3 P (L § cAT) 

~ ( t ) = ~ ( t ) +  a~l I n ( l +  c A - ~ ) '  

(29) 

As is evident, the functional dependences (29) coincide with those established above for the case shown in Fig. la. From (29) 
it follows that within the framework of the model in question the width h of the two-phase transion zone is a constant 
quantity independent of time. As the coefficient a2 increases, i.e., as the opacity of the medium increases, h tends to zero, 
which is consistent with conclusions drawn in [9]. The limiting thickness of the melted substance is determined from (29) as 
t ---, ~ ; this value is finite according to the assumption of the pulse character of radiation. 

On finding the explicit expressions (29) for ~(t) and ~7(t) the determination of the dependences Ti(x, t) and zi(x, t) 
reduces to quadratures and can be performed by simple integration of Eqs. (7)-(11). We note that as t increases, the growth 
of the error of the approximate solution is to be expected, since, as the pulse radiation source attenuates, heat conduction may 
be impossible to ignore. In this case the model is complicated by introducing the corresponding terms into Eqs. (7)-(11) in 
view of the additional conditions (12), (13). 

4. Thus, constructed above is the approximate analytical model of melting of semitransparent media, externally 
irradiated by pulse radiation flux. The basis of the model is formed by the assumption of the dominant character of heating 
the medium through the absorption of radiation in comparison with heat conduction. The model establishes easily checkable 
criteria of formation of the leading and trailing edges of melting, makes it possible to analytically, without resorting to 
cumbersome calculations, determine the dynamics of the process of melting, to find the temperature field and the melt 
fraction distribution in a two-phase isothermal zone, and to estimate the limiting thickness for the melted material. The 
established dependences may be used in practice to promptly estimate the impact of exposure to pulse irradiation of partially 
transparent materials and also to serve as a test in numerical calculations by complicated models. The proposed model may 
be complicated by taking into account the spectral dependence of the extinction coefficient and the reflectivity of the 
substance, the nonuniform initial temperature, and the dependence of az on the melt fraction z. In this case, numerical 
calculations will be required; however, a qualitative picture of phenomena will not change. 
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NOTATION 

x, coordinate; t, time; t~, operating time of the radiation source; Rl, R2, R3, reflectivity of the medium, the 
intermediate zone, and the melt; a~, a 2, a3, extinction coefficients of the solid phase, the intermediate zone, and the melt; To, 
initial temperature; T,, melting temperature; U, u, 0, y, dimensionless parameters; • thermal conductivity; ,o, density; c, 
specific heat capacity; L, specific heat of melting; F, intensity of the radiation flux; f, dimensionless intensity of the radiation 
flux; ~, r/, leading and trailing edges of melting; z, melt fraction; 9, region on the plane (x, t); K~, K2, dimensionless criteria 
of the regimes of melting; ,I,, integral of the radiation flux; AT = T, --  To; h, intermediate zone thickness. Indexes: l 
corresponds to the liquid phase. 
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